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1 Introduction

In a recent paper [3] P. Ševera applies the method of Atiyah and Bott [2] to construct a sym-
plectic form on the moduli space of flat connections on a surface with boundary satisfying
boundary conditions given by Lagrangian Lie subalgebras. In these notes we give an expo-
sition of the early parts of Ševera’s paper (those giving the construction of the symplectic
form), and also discuss briefly the possibility of obtaining Ševera’s moduli spaces using the
theory of Lie group-valued moment maps [1].

2 Notation and setup

If f is a smooth map between manifolds, Tf will denote the induced tangent map. Let G
be a connected Lie group with Lie algebra g possessing an Ad-invariant inner product 〈, 〉.
Given g ∈ G, lg and rg will denote the maps G→ G given by left and right multiplication by
g respectively. We use θL, θR to denote the left and right Maurer-Cartan forms respectively.
We will be most interested in the case where 〈, 〉 has split signature. If M is a manifold then
G(M), g(M) will denote the space of smooth maps M → G and M → g respectively.
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The situation that Ševera considers is as follows. Let Σ be a compact oriented surface with
boundary, and we allow the boundary to have corners (recall for manifolds with boundary
we allow some charts to have half-spaces R≥0 ×Rn−1 for domains; in this case we also allow
some charts to have (R≥0)2 for domains). For simplicity Ševera also assumes that none of the
components of Σ is closed, and that on each component of ∂Σ there is at least one corner (he
makes a further assumption (see below) that ensures there are at least two corners on each
component of the boundary). We thus get a picture of the boundary of Σ as consisting of a
finite number of components, each of which looks like an n-gon for some n = 2, 3, 4, ... (for
n = 2 imagine curved sides). We refer to segments of the boundary between two adjacent
corners as “arcs” or “edges”.

Ševera then defines a colored surface as a surface Σ as described above whose arcs a have
been decorated with Lagrangian Lie subalgebras h⊥a = ha ⊂ g, and such that whenever a and
b are adjacent arcs then ha ∩ hb = {0} (this in turn means that for a colored surface, each
component of the boundary must have at least two corners). By the Lie correspondence, for
each ha we get a corresponding connected Lie subgroup Ha ⊂ G (i.e. the subgroup generated
by exp(ha), or equivalently the leaf through the identity e ∈ G of the integrable distribution
g ∈ G 7→ g · ha ⊂ TgG; we recall that this is a Lie group, but in general it need not be closed
in G, it is an immersed submanifold of G).

3 Moduli space of colored flat connections

Given G as above and a colored surface Σ, Ševera defines a symplectic manifold MΣ, which
is a moduli space of flat connections over Σ satisfying certain boundary conditions, i.e. the
connection must be a colored connection, to be defined below.

3.1 Connections

We begin by briefly recalling some basic facts about connections–we’ll be quite selective and
only describe facts that are crucial to what follows (see one or more standard texts for more
information). Let π : P → Σ be a principal G bundle, with left G-action. For each ξ ∈ g we
define a vector field ξP on P by

ξP (p) =
d

dt

∣∣∣∣
t=0

exp(−tξ) · p.

Recall that a connection on a principal G-bundle π : P → Σ is an equivariant g-valued
1-form A on P satisfying

A(ξP ) = ξ.

Equivariance means that for g ∈ G we have L∗gA = Adg ◦A, where Lg denotes left action by
g. We denote the space of all connections on a G-bundle P by A(P ).

Given an open covering Ui of Σ together with smooth local sections φi : Ui → π−1(Ui), we
may think of a connection as a collection of g-valued 1-forms Ai = φ?iA on Ui which obey a
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compatibility condition on overlaps:

Ai = Adtij ◦ Aj − t∗ijθR, (1)

where tijφj = φi on Ui ∩Uj is the transition function. The proof follows essentially from the
Leibniz rule. Let X = x′(0) be a vector tangent to the curve x(λ) in Σ and put x0 = x(0).
Then

Tφi ·X = T (tijφj) ·X

=
d

dλ

∣∣∣∣
0

tij(x(λ))φj(x(λ))

=
d

dλ

∣∣∣∣
0

tij(x(λ))φj(x0) +
d

dλ

∣∣∣∣
0

tij(x0)φj(x(λ)) (Leibniz)

=
d

dλ

∣∣∣∣
0

tij(x(λ))tij(x0)−1φi(x0) + LtijTφj ·X

=
d

dλ

∣∣∣∣
0

exp(λt∗ijθ
R(X)) · φi(x0) + LtijTφj ·X

= −ξP + LtijTφj ·X,

where ξP is the vertical vector on P generated by t∗ijθ
R(X). Applying A to both sides and

using the defining properties of A (i.e. L∗gA = AdgA and A(ξP ) = ξ) yields

Ai(X) = −t∗ijθR(X) + AdtijAj(X).

Conversely a collection of g-valued 1-forms Ai defined on opens sets Ui obeying this compat-
ibility condition give rise to a unique connection on P . Sometimes we will take the collection
of local sections (Ui, φi) as understood, and (informally) write A ∈ Ω1(Σ)⊗g (understanding
that in fact this refers to a collection of local expressions for A, compatible on overlaps). We
will switch between the local and global descriptions of a connection depending on conve-
nience.

A connection on a principal bundle P gives rise to a covariant derivative on associated vector
bundles; let ζ be a section of an associated vector bundle E = P ×ρ V (so ζ : P → V and
is equivariant with respect to the action of G on P and on the representation (V, ρ)), then
using a local section φ : U ⊂ Σ→ P to pull back the connection and the section ζ we have

dAζ = dζ + A · ζ,

where A · ζ indicates the Lie algebra action (and we really mean φ∗A, φ∗ζ but have left this
out to make the formula less cluttered). In particular recall that ad P = P ×Ad G g (i.e. g
carries the adjoint representation). For ξ a section of ad P we have

dAξ = dξ + [A, ξ].

The horizontal distribution of A is the distribution p ∈ P 7→ ker(Ap). A vector X ∈ TpP
is called horizontal if it lies in the horizontal distribution. If we have a smooth curve
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γ : [0, 1] → Σ together with a point p ∈ π−1(γ(0)), then there is a unique curve γ̃ in P
called the horizontal lift of γ through p satisfying (1) π ◦ γ̃ = γ, (2) γ̃ has horizontal tangent
vector field, and (3) γ̃(0) = p. If γ is closed then γ̃(1) lies in the same fibre as γ̃(0), and
so there is some unique group element g ∈ G such that γ̃(1) = g · γ̃(0). This prescription
defines a mapping from the collection of smooth closed curves at π(p) to G, namely γ 7→ g.
We’ll refer to this map as the holonomy map; to define it we need both a connection and a
choice of base point p ∈ P . The image of this mapping is denoted Holp(A) and is called the
holonomy group of A at p.

On the other hand if h · p =: q ∈ π−1(x) is some other point in the same fibre as p, and if γ̃
is the horizontal lift of a closed curve based at x having γ̃(0) = p, γ̃(1) = g · p then h · γ̃ is a
horizontal lift of the same closed curve based at x but now having (h · γ̃)(0) = h · p = q and
(h · γ̃)(1) = h · g · p = (Adhg) · q. This shows that we have a canonical isomorphism

Holp·h(A) = AdhHolp(A). (2)

If p and q are in different fibres, and assuming Σ is path-connected, we can choose any curve
from π(p) to π(q), lift to a horizontal curve α from q to some point p′ in the same fibre as
p. Then the curves αg := g · α as g ranges over G are all horizontal. If γ is a closed curve
at π(p′) with γ̃ the horizontal lift starting at p′ and ending at h · p′ then we get a horizontal
curve starting at q by following α then γ̃ and then following αh backwards. This gives an
isomorphism from Holp(A) to Holq(A), although notice that in this case (as for fundamental
groups), the isomorphism is not canonical since it depended on the choice of a curve from
π(q) to π(p).

Given a connection A, its curvature F is a G-equivariant, horizontal g-valued 2-form on P
given by

F = dA+ 1
2
[A,A].

Horizontal means that F vanishes on directions tangent to the fibres, i.e. if v ∈ ker(Tπ)
then ι(v)F = 0. Since F is both equivariant and horizontal, it may equivalently be thought
of as an ad P -valued 2-form on Σ. There are various interpretations of the curvature (see
one or more standard texts, or e.g. the discussion in [2]). One that is particularly important
for us (and so we give a proof) is the following.

Proposition 3.1. Let X, Y be horizontal vector fields, then

A([X, Y ]) = −F (X, Y ).

Proof. Using the formula for the exterior derivative of a 1-form we have

dA(X, Y ) = XA(Y )− Y A(X)− A([X, Y ]).

The first two terms vanish since X, Y are horizontal vector fields. Also

1
2
[A,A](X, Y ) = [A(X), A(Y )],

4



which also vanishes, again because X, Y are horizontal. Plugging these two results into the
definition of F yields

F (X, Y ) = −A([X, Y ]).

By Frobenius’ theorem, the curvature is exactly the obstruction to the integrability of the
horizontal distribution. We will be interested in flat connections, so F = 0 and the horizontal
distribution gives us a foliation of P . This has several useful consequences. Fix p ∈ P . The
leaf of the horizontal foliation through p, together with the map π gives a covering space of
Σ. So we can carry over standard results about covering spaces. In particular, the endpoint
of the horizontal lift to p of a curve starting at x = π(p) depends only on the homotopy class
of the curve. The holonomy mapping thus induces a homomorphism from the fundamental
group π1(Σ, x) to G.

We can also ask the reverse question: given a homomorphism φ from π1(Σ, x) to G, is there
a principal G bundle π : P → Σ and a point p ∈ π−1(x) together with a flat connection
A on P such that the holonomy mapping is the homomorphism φ? The answer is yes
and we’ll see this in detail below when we discuss colored connections. We’ll show further
that holonomy completely characterizes a connection once we allow for “gauge equivalence”,
which we discuss next.

3.2 Gauge group

Let π : P → Σ be a principal G bundle as above. The gauge group Gau(P ) consists
of smooth automorphisms f of P (that is, fibre-preserving G-equivariant diffeomorphisms)
which induce the identity map on Σ: π ◦ f = π. Such a gauge transformation may be
described by a smooth function f̃ : P → G

f(p) = f̃(p) · p,

which is equivariant
f̃(g · p) = Adgf̃(p).

We check that

f(g · p) = f̃(g · p)g · p
= g · f̃(p) · p.

For some purposes it is simpler to deal with gauge transformations by working locally, i.e.
assume we have local trivializations (Uα, φα) and work with the local expressions Aα := φ∗αA,
which are g-valued 1-forms on open subsets Uα of Σ. On a local patch Uα a gauge transfor-
mation f̃ is represented by the map gα := f̃ ◦ φα : Uα → G (the full gauge transformation
over Uα can be recovered from gα using equivariance). Thus a gauge transformation is equiv-
alently given by a collection of maps gα : Uα → G which are compatible on overlaps (the
point being that this way we can think of a gauge transformation as something defined on
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Σ, rather than as something defined on P but which is constrained by equivariance). For
simplicity of notation we will usually just write A ∈ Ω1(Σ) ⊗ g and g ∈ G(Σ), and by this
notation we implicitly mean that we have a collection of such things defined locally and
compatible on overlaps.

In this notation, let’s now write down the action of the gauge group on the space of connec-
tions. If g ∈ G(Σ) and A ∈ Ω1(Σ)⊗ g then

g · A := AdgA− g∗θR. (3)

In the global picture, the action f ∈ Gau(P ) can be thought of as pushing-forward the
horizontal subspaces by Tf (so that in particular, horizontal curves are mapped to horizon-
tal curves), or equivalently as pulling the globally defined 1-form on P back by the inverse
(f−1)∗. Working out a local expression gives (3)–the proof is the same as that given above for
equation (1). Some intuition as to its form: the first term does not represent a change in the
connection, but rather arises because we’ve moved by g on P–it comes from the equivariance
property L∗gA = Adg ◦A. The second term represents a “tilting” of the horizontal subspaces
caused by the fact that g varies on the base, the pull-back of the Maurer-Cartan form giving
exactly this correction.

Under a gauge transformation the curvature F ∈ Ω2(Σ)⊗ g transforms more simply

F 7→ AdgF. (4)

Unlike (3), there is no affine term. This means that the subset of flat connections Aflat(P )
is preserved by the gauge group.

Given a g-valued function ξ on Σ, we get a 1-parameter group of gauge transformations by
putting g(λ) = exp(λξ). If we put this into the formula (3) and take the derivative with
respect to λ at 0 we get the vector field ξA generated by ξ on A(P )

ξA(A) = −[A, ξ]− dξ = −dAξ. (5)

We see that tangents to the gauge orbits are dA-exact forms.

3.3 Colored connections

The moduli space of flat connections MΣ which Ševera considers are connections (up to
gauge equivalence) on Σ satisfying certain boundary conditions. Recall that each edge a is
decorated with a Lagrangian Lie subalgebra ha, and the corresponding connected Lie sub-
group is Ha ⊂ G. Ševera defines a colored G-bundle over Σ to be a G-bundle over Σ along
with additional structure: for each edge a a submanifold Pa ⊂ π−1(a) which is a principal
Ha-bundle over a (in other words, we have a reduction of the structure group to Ha over a)
together with a choice of point px ∈ Pa ∩Pb for each pair of edges a, b meeting at a corner x.
So we can denote a colored G-bundle by (P, Pa, px) where a is understood to run over all the
edges, and x over all the vertices. In particular notice that we have a canonical trivialization
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of the fibres over the corners (map px to e ∈ G). We will call these special chosen points in
the fibres above the corners “marked points” or “special points”.

Two colored G-bundles (P (i), P
(i)
a , p

(i)
x ), i = 1, 2 having the same ha decorating the edges a,

are isomophic if there is a fibre-preserving, G-equivariant diffeomorphism f : P (1) → P (2)

which induces the identity on Σ and such that f(P
(1)
a ) = P

(2)
a , f(p

(1)
x ) = f(p

(2)
x ). We will

identify colored G-bundles up to such isomorphisms. So for example if we have connections
Ai on isomorphic colored G-bundles (P (i), P

(i)
a , p

(i)
x ), i = 1, 2, we will identify the bundles and

assume we have two connections Ai, i = 1, 2 on a fixed colored G-bundle (P, Pa, px). If we
like we can assume we’ve chosen a unique fixed representative (P, Pa, px) of each isomorphism
class.

Given a colored G-bundle (P, Pa, px), Ševera defines a colored connection to be a connection
which restricts to an ha-valued form on each Pa (this makes sense because Pa is a principal
Ha-bundle, and ha is invariant under the adjoint action of Ha). The space of colored con-
nections on P is denoted Acol(P ), and collecting these spaces together for non-isomorphic
P we get the space of colored connections over Σ, denoted Acol(Σ). We remark again that
when we say “non-isomorphic” we are using the (stronger) notion of isomorphism of colored
G-bundles. If we restrict to flat connections, the corresponding spaces are denoted Aflatcol (P )

and Aflatcol (Σ).

Similarly, we will be interested in a subgroup of the usual gauge group which preserves the
colored G-bundle structure, i.e. the submanifolds Pa and the marked points px. We will
refer to this subgroup as the colored gauge transformations Gaucol(P ). Since these gauge
transformations preserve the submanifolds Pa, if we describe a gauge transformation locally
in terms of maps gi : Vi ⊂ Σ→ G, then we can assume the gi to be Ha-valued over a (they
restrict to a gauge transformation of the Ha-bundle Pa over a). Colored gauge transforma-
tions restrict to the identity over the corners so that the marked points px ∈ Pa ∩ Pb are
preserved. In particular, colored gauge transformations are automatically based (this means
in particular that the action of the colored gauge group on the space of colored connections
is free since for a non-trivial transformation the affine term is always present, and (neglecting
analytical issues) the resulting quotient is nonsingular).

Given a connection A on a colored bundle, we can make sense of the “holonomy” of A along
a curve γ between two corners γ(0) = x, γ(1) = y. This is because we have canonical triv-
ializations of the fibres above the corners. In detail, let px, py be the marked points in the
fibres above x, y respectively. Let γ̃ be the lift of γ with initial point γ̃(0) = px. Then the
holonomy of A along γ is the element g ∈ G such that γ̃(1) = g · py. Let us introduce some
notation: hol(A, γ) will denote this unique element g ∈ G. We can think of hol(γ) as a func-
tion A ∈ Acol(Σ) 7→ hol(A, γ) ∈ G. Because the group of colored gauge transformations act
as the identity on fibres above corners, it preserves hol(A, γ), and so hol(γ) can be thought
of as a function on the (colored) gauge orbits.

If furthermore A is flat, then hol(A, γ) depends only on the homotopy class of γ. Let X
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denote the set of corners of Σ, and Π(Σ, X) the set of homotopy classes of paths between
points of X (note in particular that each edge a ∈ ∂Σ may be thought of as an element in
Π(Σ, X)). Then we’ve shown that we have a (gauge invariant) function

hol : Π(Σ, X)×Aflatcol (P )→ G.

We also note that Π(Σ, X) is a groupoid over X with source s : Π1(Σ, X) → X the map
taking a homotopy class of curves to its common end point, and target t : Π(Σ, X) → X
the map taking a homotopy class of curves to its common initial point. The multiplication
is just concatenation of (homotopy classes of) paths (α, β) 7→ α ? β (where this means first
follow α, then β). If we fix a flat connection A then the map

hol(A) : Π(Σ, X)→ G

γ 7→ hol(A, γ)

is a homomorphism of groupoids (i.e. a covariant functor). Let’s show this.

Let x, y, z ∈ X with corresponding marked points px, py, pz, let α, β ∈ Π(Σ, X) be curves
with t(α) = x, s(α) = t(β) = y, s(β) = z, and let α̃, β̃ be lifts of α, β with initial points px, py
respectively. A fixed connection A is understood throughout. By definition, α̃(1) = hol(α)·py
and β̃(1) = hol(β) · pz. Also α̃ ? (hol(α) · β̃) is a lift of α ? β and so

hol(α ? β) · pz = (α̃ ? (hol(α) · β̃))(1)

= hol(α) · hol(β) · pz
⇒ hol(α ? β) = hol(α) · hol(β).

Using the same method we get a similar result for inverses: hol(ᾱ) = hol(α)−1 where ᾱ
denotes α traversed in the opposite direction.

3.4 The moduli space

The moduli space of flat colored connections on a bundle P is

MΣ(P ) := Aflatcol (P )/Gaucol(P ).

We take the (disjoint) union of these spaces for non-isomorphic colored G-bundles P to get
the moduli space MΣ. We’ll write this as

MΣ = Aflatcol (Σ)/Gaucol

to indicate that MΣ is the space of colored flat connections on Σ up to (colored) gauge
equivalence.

Ševera gives two other equivalent descriptions of MΣ in terms of holonomies. We’ll repeat
these other descriptions here.
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Using cuts
Cut Σ along curves connecting corners until we get a polygon. Notice that the two vertices
bounding any edge in the resulting polygon came from corners in the original surface Σ.
Let s label the sides of the polygon. The moduli space MΣ is the space of assignments
s 7→ γs ∈ G satisfying

1. if s is part of the boundary of Σ then γs ∈ Hs,

2. if s, s′ are the two sides which arise from a single cut then γs′ = γ−1
s ,

3. the product of the γs going cyclically around the boundary of the polygon is e.

This picture arises from the description of MΣ in terms of connections by sending each col-
ored flat connection A to the assignment s 7→ hol(A, s). The first condition is satisfied by
virtue of the fact that A is colored, the second is automatic, and the third is satisfied because
A is flat and the curve in Σ corresponding to the product of the γs around the boundary of
the polygon is homotopic to a point. It doesn’t matter which connection A we choose in any
given Gaucol equivalence class because colored gauge transformations leave fixed the fibres
over the corners and so don’t change the holonomies (this is why unlike the pure Atiyah-Bott
case, we don’t need to quotient out by conjugations).

Let n be the number of cuts. This description of MΣ shows us that

MΣ = Φ−1(e),

where

Φ :

(∏
a

Ha

)
×Gn → G

(h1, ..., hk, g1, ..., gn) 7→
∏
s

γs.

Here the hi label segments of ∂Σ while the gi label cuts (there is one gi per cut, and it
appears in the product on the right once as gi and once as g−1

i ).

As groupoid morphisms
The moduli space can also be described as a collection of functors F :

MΣ = {F : Π(Σ, X)→ G|F (a) ∈ Ha for each edge a in ∂Σ}.

This description is nice because it makes it clear that in the above description in terms of
cuts, the resulting space does not depend on the particular cuts chosen. The cuts made in
the polygon description correspond to a choice of generators for the groupoid Π(Σ, X).

Given a Gaucol-equivalence class of connections [A], we’ve seen already that F := hol(A)
gives a functor satisfying the above. We still need to explain the reverse, namely given a
holonomy description (either as an assignment s 7→ γs or a functor F : Π(Σ, X)→ G), how
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to construct a colored flat connection with the required holonomies.

Let Σ̃ denote the space of homotopy classes of paths in Σ having initial point in X (recall
that the universal covering space of Σ is the space of homotopy classes of paths having some
fixed initial point, so Σ̃ is just a disjoint union of n copies of the universal covering space,
where n is the number of corners). We have natural maps f : Σ̃→ X, which maps a homo-
topy class of curves α to their common initial point, and q : Σ̃→ Σ the covering projection
which maps a class of curves α to their common end point. There is a groupoid action of
Π(Σ, X) on Σ̃: let γ ∈ Π(Σ, X) and α ∈ Σ̃, whenever s(γ) = f(α) (i.e. γ has end point
equal to the initial point of α), we can form γ ? α ∈ Σ̃. When we go to the orbit space, we
erase any information of about the homotopy class, and so the orbit space is isomorphic to
Σ with isomorphism induced by the map q.

Now suppose we have a functor F satisfying the above. Consider the trivial bundle P̃ = Σ̃×G
with the product connection Ã, i.e. if (α, g) ∈ Σ̃×G then T(α,g)(Σ̃×G) = TαΣ̃× TgG and

if (Ỹ ,−ξ · g) is a tangent vector then

Ã((Ỹ ,−ξ · g)) = ξ.

We can lift the action of the groupoid Π(Σ, X) to P̃ . When s(γ) = f(α) we define

γ · (α, g) = (γ ? α, gF (γ)−1).

Let P = P̃ /Π(Σ, X); we denote elements of the quotient using square brackets, so [α, g]
denotes the orbit of (α, g). In particular when s(γ) = f(α) we have [α, g] = [γ ?α, gF (γ)−1].
Because the groupoid action is equivariant for the left G-action on P̃ , the quotient carries
a left G-action. The projection is induced by q: π([α, g]) = q(α). Thus P is a principal
G-bundle over Σ.

Next let’s show that Ã induces a connection on P . Let γ ∈ Π(Σ, X), α ∈ Σ̃ with s(γ) = f(α),
and (Ỹ ,−ξ · g) ∈ T(α,g)P̃ . The tangent map Tγ acts by

Tγ (Ỹ ,−ξ · g) = (Tγ · Ỹ ,−ξ · (g · F (γ)−1))

⇒ (γ∗Ã)(Ỹ ,−ξ · g) = ξ.

This shows that Ã is invariant under the groupoid action and so descends to a connection
A on P . Since Ã is flat, A is also flat. We can horizontally lift a curve γ in Σ to P by
first lifting to Σ̃ (via q), then to P̃ using Ã, and then applying the quotient map. In detail,
let γ be a curve in Σ with initial point x. Choose a curve (or homotopy class of curves)
α ∈ Σ̃ with initial point in X and end point x. Then the lift of γ to α ∈ Σ̃ is just the curve
t ∈ [0, 1] 7→ α ? γt where

γt(λ) =

{
γ(λ) if λ < t

γ(t) if λ ≥ t

(this is a curve in Σ̃, i.e. a 1-parameter family of (homotopy classes of) curves). In particular
its end point is α ? γ. Since Ã is the product connection, the horizontal lift of α ? γt to a
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point (α, g) ∈ P̃ is the curve t ∈ [0, 1] 7→ (α ? γt, g). Applying the quotient, we get a curve
t 7→ [α ? γt, g] in P , the horizontal lift of γ to the point [α, g] ∈ P .

For each x ∈ X, let cx denote the (homotopy class of the) constant curve at x. We take
the marked point in the fibre above x to be px = [cx, e]. As explained earlier, with marked
points and a flat connection A, we get a map hol(A) : Π(Σ, X)→ G. Now suppose we have
a curve γ ∈ Π(Σ, X) with initial point x0 and end point x1 in X. As explained above, the
lift to cx0 ∈ Σ̃ is cx0 ? γt. Then lift horizontally to (cx0 ? γt, e). Applying the quotient map,
we find that the horizontal lift of γ to px0 ∈ P is t ∈ [0, 1] 7→ [cx0 ? γt, e]. The end point,
which lies in the fibre above x1 is [cx0 ? γ, e]. Now cx0 ? γ is homotopic to γ ? cx1 , hence

[cx0 ? γ, e] = [γ ? cx1 , e]

= [γ ? cx1 , F (γ)F (γ)−1]

= [cx1 , F (γ)]

= F (γ) · [cx1 , e]
= F (γ) · px1 .

This shows that hol(A, γ) = F (γ) for every γ ∈ Π(Σ, X). We’ve thus shown that A has the
desired holonomies between pairs of corners.

The marked points also give us the rest of the colored structure. Consider an edge a bounded
by corners x0, x1 ∈ X. We have submanifolds Ha · px0 ⊂ π−1(x0) and Ha · px1 ⊂ π−1(x1)
above the corners. Now choose a point p := h · px0 ∈ Ha · px0 and let ã denote the horizontal
lift of a through p. By the above, the endpoint of ã is just h ·F (a) ·px1 . Since by assumption
F (a) ∈ Ha, we have h ·F (a) ·px1 ∈ Ha ·px1 . This shows that if we lift a to a horizontal curve
through each point in Ha · px0 , the set of end points is exactly Ha · px1 . It follows that the
submanifold Pa obtained by parallel transporting Ha · px0 along a is the same as that got
by parallel transporting Ha · px1 along a (in the opposite direction). The submanifold Pa is
clearly an Ha sub-bundle, because left multiplication by an element h ∈ Ha just permutes
the curves linking Ha · px0 and Ha · px1 as described above. By construction it’s clear that
A restricts to Pa (i.e. the lift of a to any point in Pa doesn’t leave Pa), and since Ha acts
transitively on the fibres, the restriction takes values in ha.

We’ve now explained how to obtain a colored flat connection on a colored G-bundle having
holonomies prescribed by a functor F . We will refer to the specific colored G-bundle and
connection arising from this construction (i.e. from Σ̃ × G and the product connection by
quotienting by an F -lift of the Π(Σ, X)-action) as the “standard example for the functor F”.
The last thing we would like to show is that the correspondence between equivalence classes
of colored flat connections on colored G-bundles and holonomy descriptions F is one-one.
We will do this by considering an arbitrary colored flat connection A on a colored G-bundle
(P, Pa, px) with F = hol(A), and showing that it is isomorphic to the standard example for
the functor F .

Suppose we have a colored flat connection A on a colored G-bundle (P, Pa, px), and let
F = hol(A) be the corresponding holonomy functor. These induce a colored G-bundle P̃
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and colored flat connection Ã on Σ̃ by pull-back, i.e. P̃ = q∗P , Ã = q∗A. As Σ̃ is simply con-
nected, P̃ must be trivial–indeed we can find an explicit global section as follows. For each
x ∈ X, we consider the point cx ∈ Σ̃ (recall cx denotes the homotopy class of the constant
curve at x). Notice that the points cx for different x are in different connected components
of Σ̃ (recall that Σ̃ has n connected components (where n is the size of X), each isomorphic
to the universal covering space of Σ; the connected component containing cx with x ∈ X
consists of homotopy classes of curves having initial point x). Since Ã is flat, its horizontal
distribution gives rise to a foliation. Let xi run through the points of X, and for each i
let Σ̃i denote the connected component of Σ̃ containing cxi . For each connected component
Σ̃i of Σ̃, we choose the leaf Li of the foliation that passes through the point (cxi , pxi). The
leaf Li over Σ̃i is a covering space of Σ̃i. Since Σ̃i is simply connected, it follows that Li
is isomorphic to Σ̃i via the fibre projection, and therefore corresponds to a section φi of P̃
defined over Σ̃i. Putting the φi defined over separate connected components of Σ̃ together
we get a global section φ of P which passes through all of the points (cxi , pxi). We use this
section to trivialize P̃ = Σ̃×G. In particular the constant section e of Σ̃×P is a leaf of the
horizontal foliation of the connection Ã on Σ̃×G and so Ã is the trivial (product) connection.

So now in principal we have two projection mappings P̃ → P , the first induced from the
fact that P̃ = q∗P , and the second from quotienting P̃ = Σ̃×G by the F -lift of the Π(Σ, X)
groupoid action (as described previously). These maps agree on the points (cxi , pxi) = (cxi , e)
(one in each connected component of P̃ ) and are otherwise completely determined by parallel
transport, and so must agree everywhere. Since the projection mappings map leaves of the
horizontal foliation of Ã into leaves of the horizontal foliation of A, it follows that the
connection A is induced by Ã in the manner of the standard example for the functor F .
We’ve thus shown that our colored G-bundle and connection is isomorphic to the standard
example for the functor F .

3.5 Symplectic structure

The space of connections A(P ) on a G-bundle P form an affine space, and so in particular
its tangent space at a point A is the vector space that A(P ) is modelled on, and so can
be thought of as the set of differences a := A1 − A2 where Ai ∈ A(P ). Then a is an Ad-
equivariant horizontal 1-form on P , or equivalently a 1-form with values in the vector bundle
ad P . Given a local section φ defined on V , the pull-back φ∗a will be a g-valued 1-form on
V . As for connections, we will sometimes write a ∈ Ω1(Σ)⊗ g with the understanding that
we mean a collection of forms defined locally and compatible on overlaps. Note that under a
change of local section, the pull-back of a transforms according to the adjoint representation
(see equation (1), the affine term cancels). Similarly if P is colored, then the sub-affine space
Acol(P ) consists of Ad-equivariant horizontal 1-forms on P which take values in hb when re-
stricted to the sub-bundle Pb over each edge b. When local sections (Vi, φi) are chosen such
that they are Pb-valued on each edge b, the pull-backs φ∗i a are g-valued 1-forms on Vi taking
values in hb over each edge b. We will sometimes write this as a ∈ Ω1

col(Σ) ⊗ g, where as
before it is understood that we refer to a collection of forms defined locally and compatible
on overlaps.
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We consider a colored flat connection A ∈ Aflatcol (P ). We would like to determine the tangent

space TAAflatcol (P ). Let a ∈ Ω1
col(Σ)⊗ g, then writing F (B) for the curvature of a connection

B, we have

F (A+ λa) = d(A+ λa) + 1
2
[A+ λa,A+ λa]

= F (A) + λdAa+O(λ2)

= λdAa+O(λ2).

If a is tangent to the space of flat connections, then the curvature of F (A+λa) should vanish
to first order in λ. From the above we see that this happens iff dAa = 0. Hence

TAAflatcol (P ) = {a ∈ Ω1
col(Σ)⊗ g|dAa = 0}.

We also note that if b ∈ Ωk(Σ)⊗ g then by the graded Jacobi identity we have

[A, [A, b]] = 1
2
[[A,A], b].

And therefore

d2
Ab = (d+ [A, ·]) · (db+ [A, b])

= d([A, b]) + [A, db] + [A, [A, b]]

= [dA, b]− [A, db] + [A, db] + 1
2
[[A,A], b]

= [F (A), b].

In particular if A is flat then F (A) = 0 and dA is a differential. Recall that we also showed
above that if ξ ∈ g(Σ) generates a gauge transformation then the tangent to the gauge orbit
in Aflatcol (P ) is −dAξ. Putting this together we see that

T[P,A]MΣ ' TAAflatcol (P )/TA(Gaucol · A) = H1(Ωcol(Σ)⊗ g, dA). (6)

We define a 2-form on Acol(Σ). Let (Vi, φi) be a collection of local sections with the Vi
covering Σ, and let ρi be a partition of unity subordinate to Vi. Then we define

ωA(a, b) =
∑
i

ρi

∫
Vi

〈φ∗i a, φ∗i b〉. (7)

That this is independent of the choice of local sections φi is immediate from the fact that
under a change of local section the pull-backs of a, b transform according to the adjoint
representation, while the inner product is Ad-invariant. In fact this means that the inner
product 〈φ∗i a, φ∗i b〉 is a well-defined 2-form on Σ, and so abusing notation slightly we will
write simply:

ωA(a, b) =

∫
Σ

〈a, b〉. (8)

(The same holds for manipulations below involving ad P -valued forms on Σ.)
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In fact as we’ll show, when restricted to the flat connections Aflatcol (Σ) this vanishes on gauge
orbit directions (and is constant on orbits), so it gives us a 2-form on MΣ:

ω([a], [b]) =

∫
Σ

〈a, b〉. (9)

Let b ∈ TAAflatcol (Σ), so dAb = 0. Let ξ ∈ g(Σ) generate a 1-parameter group of colored gauge

transformations, so ξ gives rise to a vector field ξA(A) = −dAξ on Aflatcol (Σ) tangent to the
gauge orbit. Note that using compatibility of the inner product we have

〈dξ + [A, ξ], b〉 = d〈ξ, b〉 − 〈ξ, db〉 − 〈ξ, [A, b]〉
= d〈ξ, b〉 − 〈ξ, dAb〉,

and hence ∫
Σ

〈dAξ, b〉 =

∫
Σ

d〈ξ, b〉 −
∫

Σ

〈ξ, dAb〉 (10)

=

∫
∂Σ

〈ξ, b〉.

(The other integral vanishes because b is dA-closed.) Now on each edge of ∂Σ, both ξ and b
take values in the same Lagrangian Lie subalgebra (when ξ generates a colored gauge trans-
formation and b ∈ Ω1

col(Σ)⊗ g). Hence 〈ξ, b〉 = 0 on ∂Σ, and the expression above vanishes.
This shows that the 2-form (9) is well-defined on MΣ. Furthermore, it is non-degenerate by
Poincare duality, and in addition it is “constant” on MΣ e.g. in the sense that the expression
does not depend on A. So (9) warrants being called a symplectic form on MΣ; in the case
without boundary this is the Atiyah-Bott symplectic structure on the moduli space of flat
connections.

As noticed originally by Atiyah-Bott, the moduli space of flat connections modulo gauge
transformations may be thought of as a symplectic reduction of the space of connections.
The group is the gauge group and, in the case of a closed surface, the moment map is the
curvature. In Ševera’s case something similar works; notice from (10) we had

ωA(dAξ, b) =

∫
∂Σ

〈ξ, b〉 −
∫

Σ

〈ξ, dAb〉

=
d

dλ

∣∣∣∣
0

(∫
∂Σ

〈ξ, λb〉 −
∫

Σ

〈ξ, F (A+ λb)〉
)
,

(this holds for arbitrary ξ ∈ g(Σ), A ∈ A(P ) and b ∈ TAA(P )). This expression can in turn
be re-written in a suggestive form. Let ξA = −dAξ be the vector field generated by the gauge
action. Then the equation above becomes

(ιξAωA)(b) =
d

dλ

∣∣∣∣
0

(
−
∫
∂Σ

〈ξ, λb〉+

∫
Σ

〈ξ, F (A+ λb)〉
)
, (11)

the expression on the right hand side is the derivative of 〈µ, ξ〉 in the direction b, where
µ : Ω1(Σ)⊗ g→ Lie(Gau)∗ = g∗(Σ) is defined by

〈µ(A), ξ〉 = −
∫
∂Σ

〈ξ, A〉+

∫
Σ

〈ξ, F (A)〉.
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We see that (11) defines a moment map. It’s zero level set µ−1(0) is Aflatcol (Σ), and so we see
that MΣ = µ−1(0)/Gaucol is a symplectic quotient (the symplectic form is defined by the
same formula on both spaces).

We remark that in the case of a surface with boundary (and no boundary conditions), in
general this moment map is not equivariant. However in the case with Lagrangian Lie
subalgebra boundary conditions it is; it’s straightforward to compute the Poisson bracket

{〈µ, ξ1〉, 〈µ, ξ2〉} = 〈µ, [ξ1, ξ2]〉+

∫
∂Σ

〈ξ1, dξ2〉,

and the boundary term vanishes when ξ1, ξ2 take values in the same Lagrangian Lie subal-
gebras along the edges of the boundary, so we see that µ is equivariant.

We’ve seen a definition of the symplectic form on MΣ using the connection picture. Next
we consider the symplectic structure in the holonomy picture.

4 Ševera’s formula for the symplectic form

In his paper, Ševera describes a clever way of computing the symplectic form in the holon-
omy picture. The formula is similar to the one used to construct fusion products of quasi-
Hamiltonian G spaces [1] (also see below). Let U be a manifold and let G(U) be the collection
of smooth maps U → G. Pointwise multiplication turns G(U) into a group.

4.1 Central extension by closed 2-forms

We now define a certain central extension of this group by Ω2
cl(U), the closed 2-forms on U .

The product looks strange at first but ends up doing exactly what we want. Let

G̃(U) := {(g, t) ∈ G(U)× Ω2(U)|dt = g∗η},

where here η denotes the Cartan 3-form on G; our convention is

η = − 1
12
〈[θL, θL], θL〉.

This becomes a group when we define multiplication and inverses by

(g1, t1)(g2, t2) := (g1g2, t1 + t2 + 1
2
〈g∗1θL, g∗2θR〉), (12)

(g, t)−1 = (g−1,−t). (13)

The proof that G̃(U) is indeed closed under (12) follows from the key formula

Mult∗η = pr∗1η + pr∗2η + 1
2
d〈pr∗1θL, pr∗2θR〉 (14)
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where Mult : G×G→ G is the group multiplication, and pr1, pr2 are the projections onto
the first and second factors respectively of the product G×G. Indeed if we compute

(g1g2)∗η = (Mult ◦ (g1, g2))∗η

= (g∗1, g
∗
2) ◦Mult∗η

= (g∗1, g
∗
2)(pr∗1η + pr∗2η + 1

2
d〈pr∗1θL, pr∗2θR〉)

= (pr1 ◦ (g1, g2))∗η + (pr2 ◦ (g1, g2))∗η + 1
2
d〈(pr1 ◦ (g1, g2))∗θL, (pr2 ◦ (g1, g2))∗θR〉

= g∗1η + g∗2η + 1
2
d〈g∗1θL, g∗2θR〉

= d
(
t1 + t2 + 1

2
〈g∗1θL, g∗2θR〉

)
we get exactly the multiplication formula above. The equation (14) itself can be proved by
a somewhat tedious but direct calculation.

Next we want to find the Lie algebra of G̃(U). We claim that it is

g̃(U) := g(U)⊕ Ω2
cl(U),

with Lie bracket
[(x1, s1), (x2, s2)] := ([x1, x2], 〈dx1, dx2〉).

The Jacobi identity follows from the Jacobi identity for g and the Ad-invariance of the inner
product on g. Clearly the bracket vanishes on Ω2

cl(U), so this is a central extension of the
Lie algebra g(U) (with pointwise bracket). We now want to verify that this is indeed the Lie
algebra of G̃(U).

Proposition 4.1. The Lie algebra g̃(U) is the Lie algebra of G̃(U).

Proof. Consider a curve (eλx, S(λ)) in G̃(U) with S(0) = 0 (so that the curve passes through
the identity), where here x ∈ g(U), and for each λ, S(λ) is a 2-form on U satisfying dS(λ) =
(eλx)∗η. Notice that

(eλx)∗θL
∣∣∣∣
λ=0

= id∗θL = 0, (15)

where id : U → G denotes the constant map id(u) = e for all u ∈ U . Hence by the Leibniz
rule

d

dλ

∣∣∣∣
0

(eλx)∗η = 0.

This shows that d(∂λS(λ)|0) = 0, and so the tangent space to G̃(U) at the identity is indeed
g̃(U).

Recall that if G is any Lie group and X ∈ g = Lie(G), the exponential map is defined to be
the unique solution of the ODE

d

dλ

∣∣∣∣
λ0

exp(λX) = T lexp(λ0X) ·X

=
d

dλ

∣∣∣∣
0

exp(λ0X) · exp(λX) (16)
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having initial condition exp(0) = 1. We’ll use exp(X) to denote the exponential map in
G̃(U) and reserve eX for the exponential map in G(U). Write

exp(λ(x, s)) = (eλx, S(λ)) (17)

where S(0) = 0, S ′(0) = s. Putting (17) into the definition (16) and noting that

d

dλ

∣∣∣∣
0

(eλx)∗θL =
d

dλ

∣∣∣∣
0

(eλx)∗θR = dx. (18)

yields
S ′(λ) = s+ 1

2
〈(eλx)∗θL, dx〉. (19)

If desired we can integrate this

S(λ) = λs+ 1
2

∫ λ

0

〈(eτx)∗θL, dx〉dτ. (20)

Now let’s compute the bracket. Recall that for any Lie group G and X, Y ∈ Lie(G) we have

[X, Y ] = adXY =
d

dλ

∣∣∣∣
0

Adexp(λX)Y =
d

dλ

∣∣∣∣
0

d

dλ′

∣∣∣∣
0

(
exp(λX) exp(λ′Y ) exp(−λX)

)
. (21)

We apply this to the case at hand using the formula (12) for the product in G̃(U). This
gives

[(x1, s1), (x2, s2)] =
d

dλ

∣∣∣∣
0

d

dλ′

∣∣∣∣
0

(
eλx1 , S1(λ)

)(
eλ
′x2 , S2(λ′)

)(
e−λx1 ,−S1(λ)

)
=

d

dλ

∣∣∣∣
0

d

dλ′

∣∣∣∣
0

(
eλx1eλ

′x2e−λx1 , S1(λ) + S2(λ′)− S1(λ)

+ 1
2
〈(eλx1)∗θL, (eλ′x2)∗θR〉+ 1

2
〈(eλx1eλ′x2)∗θL, (e−λx1)∗θR〉

)
=

(
[x1, x2], 1

2

d

dλ

∣∣∣∣
0

d

dλ′

∣∣∣∣
0

[
〈(eλx1)∗θL, (eλ′x2)∗θR〉+ 〈(eλx1eλ′x2)∗θL, (e−λx1)∗θR〉

])
.

Let lg denote the map G → G given by left-multiplication by g. Recalling that for a map
g : U → G, g∗θL = T lg−1 ◦ Tg (which can be abbreviated g−1dg), we have

(eλx1eλ
′x2)∗θL = Ade−λ′x2 (eλx1)∗θL + (eλ

′x2)∗θL.

We apply this to the expression above:

[(x1, s1), (x2, s2)] =

(
[x1, x2], 1

2

d

dλ

∣∣∣∣
0

d

dλ′

∣∣∣∣
0

[
〈(eλx1)∗θL, (eλ′x2)∗θR〉

+ 〈Ade−λ′x2 (eλx1)∗θL + (eλ
′x2)∗θL, (e−λx1)∗θR〉

])
.
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To compute the derivatives, we make use of (15) and (18). Most of the terms drop out and
we’re left with

[(x1, s1), (x2, s2)] =
(
[x1, x2], 1

2
〈dx1, dx2〉 − 1

2
〈dx2, dx1〉

)
=
(
[x1, x2], 〈dx1, dx2〉

)
as required.

Ševera’s formula is simplest when expressed as a product in a bigger group which Ševera
calls G̃big(U) defined as

G̃big(U) := G(U)× Ω2(U),

with the same formula for the product and inverse as G̃(U).

Recall that by cutting Σ we get a polygon with labelled edges, γs is the label on edge
s (s runs cyclically around the polygon). Since each edge connects two vertices in Σ, as
explained before we can think of γs as a function γs : u ∈ MΣ 7→ hol(Au, s) ∈ G where Au
is a connection in the equivalence class u ∈ MΣ. Let’s now state Ševera’s formula for the
symplectic form on MΣ:

(e, ω) =
∏
s

(γs, 0), (22)

where the product is taken in the group G̃big(MΣ).

4.2 Proof of the formula

Ševera gives an interesting proof that this formula indeed gives the Atiyah-Bott symplectic
form on the moduli space. Although it relies on formal arguments involving connections
on infinite dimensional principal bundles (and the analytic details are not filled in), it gives
valuable intuition as to why the formula works. The essential idea is that the formula should
be viewed as an instance of “Stokes theorem”–the symplectic form being the integral of a
“curl” (in this case, the curvature) and the product of the holonomies along the edges of the
boundary being the “circulation”.

In general since the curvature F = dA + 1
2
[A,A] has a non-linear term, we can’t think of

it as the “curl” of a “vector field” A whose “circulation” around the boundary is equal to
its holonomy. But Ševera begins by discussing a situation in which we can. We consider a
central extension of Lie groups

C → K̃ → K,

a disc D and a principal K̃-bundle P̃ → D. Then P := P̃ /C is a principal K-bundle over
D. Let A be a flat connection on P and Ã any connection on P̃ lifting A. As D is simply
connected, without loss of generality we can take P̃ = D × K̃, P = D ×K, we have global
coordinates, and we can take A to be the trivial product connection on P . Now Ã need not
be flat, but in order to induce the flat connection A on the quotient, it’s curvature must take
values in c the Lie algebra of C (this makes sense because C is in the centre of K̃, and in
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particular c is fixed under the adjoint action of K̃). But c is abelian, and so in this case the
non-linear term vanishes and we have

F̃ = dÃ

and hence by Stokes’ theorem, together with the fact that we may think of P̃ as a product
D × K̃ (so can use global coordinates regarding Ã as a c-valued 1-form on D) and the
definition of holonomy we have

exp

(∫
D

F̃

)
= exp

(∫
∂D

Ã

)
= hol∂DÃ.

Ševera applies this general result (in an infinite-dimensional context) to the central extension

Ω2
cl(U)→ G̃(U)→ G(U),

where U will denote open subsets (coordinate charts) of the moduli space MΣ. The disc D
will be the result of cutting Σ to get a polygon (so the holonomy around its boundary will
be the product of the holonomies along the edges).

The space MΣ is covered by “coordinate charts” U, ψ with ψ : U → Aflatcol (P ) such that ψ(u)
is a connection in the equivalence class u for each u ∈ U , and here P is a colored principal
G-bundle over Σ (so U smoothly parametrizes a collection of flat colored connections living
on the same bundle P → Σ). Recall that the 2-form ωA on Aflatcol (Σ) gave rise to a symplectic
form ω on MΣ. Since ωA is constant on gauge orbits and vanishes on gauge directions, we
have

ω = ψ∗ωA. (23)

Note that we have inclusions G ↪→ G(U) and G ↪→ G̃(U), which just means that we can
think of an element g ∈ G as a constant G-valued function on U (with zero 2-form part).
This means that P induces G(U) and G̃(U) principal bundles over Σ (for example, we use
the same transition functions). We denote these bundles PU and P̃U respectively, and we
have that PU ' P̃U/Ω

2
cl(U). G(U) and G̃(U) are infinite dimensional. Following Ševera’s

paper we treat these formally: we think of a section of a G(U) bundle over Σ as a being
given locally by a smooth function σ : V ⊂ Σ→ G(U), or equivalently as a family of smooth
functions σ(u) : V → G smoothly parametrized by u ∈ U . Likewise we think of a connection
on PU as being given locally (on V ⊂ Σ) by 1-forms A ∈ Ω1(V )⊗ g(U), or equivalently as a
family of smooth 1-forms A(u) ∈ Ω1(V )⊗ g smoothly parametrized by u ∈ U .

We can use our chart ψ : U → Aflatcol (P ) to define a family of 1-forms smoothly parametrized
by U . Let φ : V ⊂ Σ→ π−1(V ) ⊂ P be a local section, and define

A(u) = φ∗ψ(u) (24)
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Each A(u) is a g-valued 1-form on V , so we have a family A(u) ∈ Ω1(V ) ⊗ g smoothly
parametrized by u ∈ U–by definition a connection on PU at least defined locally over V ⊂ Σ.
Because the A(u) are just pull-backs of connections, if we have two coordinate patches V1, φ1

and V2, φ2 the corresponding 1-forms A1(u) and A2(u) will obey a compatibility condition
on overlaps

A2(u) = Adt12A1(u)− t∗12θ
R,

where t12 : V1 ∩ V2 → G is the transition function. Since the bundle PU has the same
transition functions as P , this condition (taken for all u ∈ U simultaneously) is exactly the
compatibility condition for 1-forms defining a connection on PU . Thus the equation (24)
defines a connection on PU , which we denote by A. On local patches V in Σ it is just the
family of g-valued 1-forms A(u) smoothly parametrized by u ∈ U .

Furthermore A is flat! This is just because it is “composed” of a collection of flat connections.
Explicitly, computing locally in V ⊂ Σ we have

F = F (u) = dA(u) + 1
2
[A(u), A(u)]

= 0

because for fixed u, A(u) is flat (notice that the d which appears is with respect to Σ, so
that the u-dependence plays no role).

We can explain this in a slightly different way which sheds additional light on what is go-
ing on. Locally we think of P over V ⊂ Σ as the product V × G, and we think of PU as
the product V × G(U). So (locally) we can think of a point p in PU as a smooth function
p : U → G; its evaluation at a point u ∈ U yields an element p(u) ∈ G, which we may think
of as a point in P (all over the same base point x ∈ V ⊂ Σ). Hence with local charts, we
are free to think of a point p of PU as representing a collection of points p(u) ∈ P smoothly
parametrized by U . Now if we have a curve f(λ), λ ∈ [0, 1] in V and a point p = p(u) ∈ PU ,
what is the horizontal lift to p? If we let f̃u(λ) denote the A(u) lift of f to p(u) ∈ P , then the
lift is the curve f̃(λ) := f̃u(λ), where (separately for each λ) we are using the identification
of points of PU with collections of points in P smoothly parametrized by U . The flatness
of a connection may be characterized in terms of its horizontal lifts: a connection is flat iff
whenever f is a smooth closed curve homotopic to a point, it’s horizontal lift closes. For
fixed u, A(u) is flat and therefore if f is closed and homotopic to a point then the curve f̃u is
closed. That is, p(u) = f̃u(0) = f̃u(1) and since this holds for all u we get p = f̃(0) = f̃(1),
so the lift closes. Thus we see that A is indeed flat.

A connection on P̃U can be thought of locally as a g̃(U) = g(U) ⊕ Ω2
cl(U)-valued 1-form.

Hence Ã = (A, 0), or more explicitly Ã(u) = (A(u), 0), defines a connection on P̃U which is
a lift of the connection A on PU . However as discussed before, this connection need not be
flat. Let’s compute the curvature. By definition

F̃ = dÃ+ 1
2
[Ã, Ã],

where here the exterior derivative is with respect to Σ. Now recall that [Ã, Ã] means that
we take the bracket of the Lie algebra parts and wedge the 1-form parts, the result being
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independent of the decomposition since both operations are bilinear. So write A locally as

A =
∑
µ

Aµdx
µ

where xµ are coordinates on Σ. Then

F̃ = (dA, 0) + 1
2
[(A, 0), (A, 0)]

= (dA, 0) + 1
2

∑
[(Aµ, 0), (Aν , 0)]dxµ ∧ dxν

= (dA, 0) + 1
2

∑
([Aµ, Aν ], 〈dUAµ, dUAν〉)dxµ ∧ dxν

= (dA+ 1
2
[A,A], 1

2
〈dUA, dUA〉)

= (0, 1
2
〈dUA, dUA〉).

We emphasize that the exterior derivatives and wedges happen both on Σ and on U and we
have added a superscript U to emphasize this. A wedge on U is implicit in the inner product
in lines 3,4,5 (it, as well as the dU , have come from the formula for the Lie bracket in g̃(U)),
and in lines 4,5 the inner product implies a wedge on both Σ and U . The resulting form has
zero g(U) part and so lies in Ω2(Σ)⊗ Ω2

cl(U). Hence we can think of it as an Ω2(Σ)-valued
2-form on U . What happens when we evaluate it on two vectors α, β ∈ TuU? Well dUA is
just the tangent map TA for the map A : u ∈ U 7→ A(u) = φ∗ψ(u) ∈ Ω2(V ) ⊗ g. Hence
dUA(α) = TA · α, so we end up getting

F̃ (α, β) = 〈TA · α, TA · β〉.

Here to make the formula less cluttered, we’ve not written the g(U) part (which is 0). Once
the two Ω2

cl(U) slots have been used, we’re left with a 2-form on V ⊂ Σ. We do this in each
coordinate patch (Vi, φi), writing Ai for the map φ∗i ◦ ψ on U . We can then use a partition
of unity ρi to put them together and integrate,∫

Σ

F̃ (α, β) =
∑

ρi

∫
Vi

〈TAi · α, TAi · β〉

=
∑

ρi

∫
Vi

φ∗i 〈Tψ · α, Tψ · β〉

= ωA(Tψ · α, Tψ · β)

= ψ∗ωA(α, β)

= ω(α, β),

where we’ve used the definitions of ω, ωA. So we’ve verified that

(0, ω) =

∫
Σ

F̃ . (25)

(Here we’ve put back in the g̃(U) part, which is zero.)
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As Ševera argues, his formula for the symplectic form on MΣ follows quickly from (25). Cut
Σ into a polygon D with side s labelled by the holonomy γs : MΣ → G. Then as G̃(U) is a
central extension of G(U) we have

exp

(∫
Σ

F̃

)
= hol∂DÃ.

By (25), the left hand side is just exp((0, ω)) = (e, ω) (computing the exponential in G̃(U)
using (20)). We would like to write the expression on the right as a product of holonomies
along each of the edges. Recall by this we mean that we are using the special points picked
out in the fibres above the vertices of the polygon D to give us a trivialization of the fibres
above these vertices, and then taking the holonomy relative to these trivializations. Now
the holonomy of Ã along side s is (γs, ts) ∈ G̃(U) where γs(u) = hol(A(u), s), and ts is some
2-form on U satisfying dts = γ∗sη. To compute ts we use Ã = (A, 0) together with the formula
(20) for the exponential in G̃(U),

hol(s, Ã(u)) = exp

(∫
s

Ã(u)

)
= exp

{(∫
s

A(u), 0

)}
=

(
e
∫
s A(u), 1

2

∫ 1

0

dτ 〈γs(τ)∗θL, dUIs〉u
)

= (γs(u), ts(u)),

where we’ve put

Is(u) =

∫
s

A(u) (a function on U)

γs(τ, u) = eτIs(u) (note γs(1, u) = γs(u))

for convenience; γs(τ) denotes the function u 7→ γs(τ, u) and the subscript u on the inner
product denotes evaluation at u ∈ U .

Now there are two cases to consider. If s = a is in ∂Σ (i.e. it comes from an edge a and
not a cut), then for each u the connection A(u) is colored and hence takes values in the
Lagrangian Lie subalgebra ha along the edge a. Hence for each u, Ia(u) ∈ ha. It follows that
dUIa and γa(τ)∗θL are both ha-valued for all τ . The inner product vanishes when restricted
to ha and so we see that in this case ts(u) vanishes for every u ∈ U . The second case is when
s arises from a cut. In this case ts(u) need not be zero. However since s arises from a cut,
there is another edge s′ which came from the same cut, and so the holonomy of Ã(u) along
it must be exactly the inverse, that is (γ′s(u), t′s(u)) = (γs(u), ts(u))−1 = (γs(u)−1,−ts(u)).
In the product, the 2-form parts get added together and cancel. So we may as well drop
the ts(u) part for the purposes of evaluating the product appearing in Ševera’s formula (it is
for this reason that we want to use G̃big(U) to compute the product, since when we replace
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(γs(u), ts(u)) with (γs(u), 0) we leave G̃(U)). The product of the holonomies along the edges,
taken cyclically, gives the holonomy around ∂D. We’ve thus shown that

(e, ω) =
∏
s

(γs, 0),

(each side to be evaluated at a point u ∈ U ⊂MΣ). Of course the product of all the γs must
be e since going all the way around the polygon gives a closed loop homotopic to a point. So
the interesting part of the formula is the 2-form part of the resulting product. It is a 2-form
on U ⊂MΣ and we’ve shown that it is exactly the Atiyah-Bott 2-form.

5 Group-valued moment maps

Group-valued moment maps were first defined in [1] and provided a method of construct-
ing the Atiyah-Bott symplectic form on the moduli space of flat connections on a compact
Riemann surface. One of the advantages gained was to circumvent the infinite-dimensional
symplectic reduction. Above we saw that in the case of a surface with boundary conditions
given by Lagrangian Lie subalgebras, again we find a finite-dimensional moduli space af-
ter an infinite-dimensional reduction. And moreover we have a nice formula (22) for the
symplectic form in terms of holonomies. This suggests that we should be able to construct
Ševera’s moduli spaces using the group-valued moment map approach. This is not solved
yet (the remaining difficult part is to prove “minimal degeneracy”), although there is a can-
didate quasi-Hamiltonian space (see below). We’ll review the definition and basic properties
of quasi-Hamiltonian G spaces, and briefly discuss how Ševera’s moduli spaces might be
constructed this way.

As above, let G be a Lie group with Lie algebra g having an invariant inner product 〈, 〉.
Recall that a quasi-Hamiltonian G-space is a G-manifold M carrying an invariant 2-form ω
and an equivariant map Φ : M → G, called the G-valued moment map satisfying

1. ι(ξM)ω = −1
2
〈Φ∗(θL + θR), ξ〉

2. dω = Φ∗η

3. ker(ωm) = {ξM(m)|AdΦ(m)ξ = −ξ}

where here ξM denotes the vector field on M generated by ξ ∈ g. The first condition is
called the moment map condition, and the third is called the minimal degeneracy condition
(minimal because from the moment map condition, ω must vanish on vectors appearing in
condition 3). Conditions 1 and 2 may be combined into a single statement:

dGω = Φ∗ηG

where dG = d + ι(ξM) is the equivariant differential and ηG(ξ) = −1
2
〈θL + θR, ξ〉 + η is an

equivariant extension of the Cartan 3-form. These conditions are analogous to those defin-
ing an ordinary g∗-valued moment map, and indeed quasi-Hamiltonian G-spaces have many
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properties analogous to those of Hamiltonian G-spaces.

We state here two basic properties of quasi-Hamiltonian G-spaces. See [1] for more informa-
tion and proofs.

Theorem 5.1. Let (M,ω,Φ = (Φ1,Φ2)) be a quasi-Hamiltonian G×G-space [in particular,
if (M1, ω1,Φ1), (M2, ω2,Φ2) are quasi-Hamiltonian, then (M1×M2, ω1 +ω2, (Φ1,Φ2)) is such
a space]. Let

Φfus = Φ1Φ2

ωfus = ω + 1
2
〈Φ∗1θL,Φ∗2θL〉.

Then (M,ωfus,Φfus) is a quasi-Hamiltonian G-space with the diagonal action.

The theorem above allows one to take products of quasi-Hamiltonian spaces.

Theorem 5.2. Let (M,ω,Φ) be a quasi-Hamiltonian G-space with proper moment map and
proper G-action. Also suppose the identity e is a regular value of Φ. Then the reduced space

M//G := Φ−1(e)/G

is a symplectic orbifold (the symplectic structure is induced by ω).

A motivating example was a conjugacy class C ⊂ G with the adjoint action, momentum map
the inclusion (compare to the Kirillov-Kostant-Souriau symplectic structure on coadjoint
orbits) and 2-form

ωg(ξ
#
1 , ξ

#
2 ) = 1

2
〈(Adg − Adg−1)ξ1, ξ2〉.

A second motivating example was the double D(G) = G×G which is a quasi-Hamiltonian
G×G space (in fact it is a fusion of a certain conjugacy class with itself! see e.g. [4]). If we
fuse this example, we find that the fused double D̃(G) := G×G is a q-Hamiltonian G-space
with conjugation action, and the moment map turns out to be

Φ(a, b) = aba−1b−1.

And more generally fusing h copies of D̃(G) yields G2h as a q-Hamiltonian G-space with
moment map

Φ(a1, b1, ..., ah, bh) =
h∏
k=1

aibia
−1
i b−1

i .

The reduced space Φ−1(e)/G is exactly the moduli space of flat connections on a compact
Riemann surface of genus h, and the symplectic form coming from the q-Hamiltonian reduc-
tion agrees with the Atiyah-Bott symplectic form.
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5.1 Application to Ševera’s moduli spaces?

Here we’ll describe a candidate for a quasi-Hamiltonian space that reduces to one of Ševera’s
moduli spaces. The moduli space of Ševera’s that we have in mind is an n − gon labelled
by Lagrangian Lie subalgebras h1, ..., hn (note that n must be at least 2; for n = 2 we get a
single point, more interesting examples start at n = 3). Let H1, ..., Hn be the corresponding
connected Lie subgroups of G. For convenience put N = n+ 2. Define a map

Ψ : GN → G

(g0, ..., gn+1) 7→
n+1∏
k=0

gk.

Let M be the submanifold of GN defined by

M = {(g0, ..., gn+1) ∈ GN |gk ∈ Hk, 1 ≤ k ≤ n; g0 = g−1
n+1}

= {(h1, ..., hn, g) ∈ H1 × · · · ×Hn ×G}.

(In the second description, put hk = gk, 1 ≤ k ≤ n; g = gn+1 = g−1
0 .) M is our candidate

for a q-Hamiltonian G-space whose reduction will be Ševera’s moduli space (for an n-gon).
Let i : M ↪→ GN denote the inclusion and Φ := Ψ ◦ i, so

Φ(h1, ..., hn, g) = g−1h1 · · ·hng.

There is a G-action on M for which Φ is equivariant

x ∈ G : (h1, ..., hn, g) 7→ (h1, ..., hn, gx
−1)

which is induced from the action x ∈ G : (g0, ..., gn+1) 7→ (xg0, g1, ..., gn, gn+1x
−1) on GN .

The 2-form suggested by Ševera’s formula (22) is τ (N) defined by

n+1∏
k=0

(gk, 0) =

( n+1∏
k=0

gk, τ
(N)

)
.

We also define τ (n):
n∏
k=1

(gk, 0) =

( n∏
k=1

gk, τ
(n)

)
,

which, when pulled back to the submanifold {e} × H1 × · · · × Hn × {e} ⊂ GN , is (by
Ševera’s formula) exactly the symplectic form for Ševera’s n-gon moduli space, i.e. if we let
j : Φ−1(e) ↪→ GN be the inclusion then j∗τ (n) is the desired symplectic form on Φ−1(e).

We will show two things,

1. τ (N) is G-invariant and (M, i∗τ (N),Φ) satisfies the first two properties of a q-Hamiltonian
G-space:
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(a) ι(ξM)i∗τ (N) = −1
2
〈Φ∗(θL + θR), ξ〉, ξ ∈ g

(b) di∗τ (N) = Φ∗η

2. j∗τ (N) = j∗τ (n), i.e. the symplectic structure on Ševera’s moduli space is what it should
be if it’s coming from q-Hamiltonian reduction of M .

These are fairly straightforward to show; the missing piece is the minimal degeneracy con-
dition (which we’ve attempted to show but without success so far).

We start by looking at a trick which speeds up the proof. Recall that

Mult∗η = pr∗1η + pr∗2η + dσ, σ := 1
2
〈pr∗1θL, pr∗2θR〉

Suppose (φ1, φ2) : GN → G×G are smooth maps. Then we can pull this equation back by
(φ1, φ2), giving

(φ1φ2)∗η = φ∗1η + φ∗2η + 1
2
d〈φ∗1θL, φ∗2θR〉.

Or re-arranging,
1
2
d〈φ∗1θL, φ∗2θR〉 = (φ1φ2)∗η − φ∗1η − φ∗2η. (26)

Notice in particular that if points of GN have components labelled (g0, ..., gN−1) then each
gi (and any product thereof) is a function on GN and so the above equation applies. We will
use this formula to compute dτ (N) inductively.

Proposition 5.1.

dτ (N) = (g0 · · · gN−1)∗η −
N−1∑
k=0

g∗kη

Proof. The base case follows directly from (26),

τ (2) = 1
2
〈g∗0θL, g∗1θR〉

⇒ dτ (2) = (g0g1)∗η − g∗0η − g∗1η.

Now for the inductive case: suppose

dτ (N−1) = (g0 · · · gN−2)∗η −
N−2∑
k=0

g∗kη. (27)

From Ševera’s formula we have that

τ (N) = τ (N−1) + 1
2
〈(g0 · · · gN−2)∗θL, g∗N−1θ

R〉

⇒ dτ (N) = (g0 · · · gN−2)∗η −
N−2∑
k=0

g∗kη + 1
2
d〈(g0 · · · gN−2)∗θL, g∗N−1θ

R〉,
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where we’ve used the induction hypothesis. We can calculate the last term using (26) again
(for the maps φ1 = g0 · · · gN−2 and φ2 = gN−1) giving

dτ (N) = (g0 · · · gN−2)∗η −
N−2∑
k=0

g∗kη + (g0 · · · gN−1)∗η − (g0 · · · gN−2)∗η − g∗N−1η

= (g0 · · · gN−1)∗η −
N−1∑
k=0

g∗kη.

Using the map Ψ we can write this equation as

dτ (N) = Ψ∗η −
N−1∑
k=0

g∗kη. (28)

Now we pull this equation back to M using i. Notice that on M , g0 = g−1
N−1 so that restricted

to M , g∗0η = (g−1
N−1)∗η = −g∗N−1η and so these two terms cancel in the sum in (28) when that

equation is restricted to M . On the other hand on M , gk ∈ Hk for k = 1, ..., n = N − 2, so
that i∗g∗kθ

L is hk-valued. Since η = − 1
12
〈[θL, θL], θL〉 and hk is Lagrangian, this means that

i∗g∗kη = 0 for k = 1, ..., n. So pulling back, (28) becomes

di∗τ (N) = i∗Ψ∗η = Φ∗η,

proving one of the q-Hamiltonian conditions.

Now let’s show that the moment map condition holds. For convenience we define

ϕ(g0, ..., gn+1) =
n∏
k=1

gk.

Now compute τ (N),

n+1∏
k=0

(gk, 0) = (g0, 0)

( n∏
k=1

(gk, 0)

)
(gn+1, 0)

= (g0, 0)(ϕ, τ (n))(gn+1, 0)

= (Ψ, τ (n) + 1
2
〈g∗0θL, ϕ∗θR〉+ 1

2
〈(g0ϕ)∗θL, g∗n+1θ

R〉)
⇒ τ (N) = τ (n) + 1

2
〈g∗0θL, ϕ∗θR〉+ 1

2
〈(g0ϕ)∗θL, g∗n+1θ

R〉.

Now (g0ϕ)∗θL = Adϕ−1g∗0θ
L + ϕ∗θL, which we use in the expression above to get the useful

formula

τ (N) = τ (n) + 1
2
〈g∗0θL, ϕ∗θR〉+ 1

2
〈Adϕ−1g∗0θ

L, g∗n+1θ
R〉+ 1

2
〈ϕ∗θL, g∗n+1θ

R〉. (29)

In this form it is especially easy to see that τ (N) is invariant under the G-action: recall the
action left g1, ..., gn fixed, while acting on g0 on the left, and on gn+1 on the right. Thus
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the G-action preserves ϕ, τ (n). And since in the above formula g0 (resp. gn+1) only appears
in the form g∗0θ

L (resp. g∗n+1θ
R), the left (resp. right) invariance of the left (resp. right)

Maurer-Cartan form ensures that τ (N) is invariant.

Let ξ ∈ g. The vector field generated by the action on GN is

ξ#(g0, ..., gn+1) = (−ξg0, 0, ..., 0, gn+1ξ),

(we write ξg0 as an abbreviation for T rg0 · ξ where rg0 denotes the right action, etc.). In
particular since Tϕ vanishes on the 0th and (n+1)st factors (ϕ does not depend on those
variables) we have ι(ξ#)ϕ∗θL = ι(ξ#)ϕ∗θR = 0. Similarly τ (n) also vanishes on the 0th and
(n+1)st factors, so ι(ξ#)τ (n) = 0. Hence

−ι(ξ#)τ (N) = 1
2
〈Adg−1

0
ξ, ϕ∗θR〉+1

2
〈Adϕ−1Adg−1

0
ξ, g∗n+1θ

R〉+1
2
〈Adϕ−1g∗0θ

L, Adgn+1ξ〉+1
2
〈ϕ∗θL, Adgn+1ξ〉.

On M we have g−1
0 = gn+1 =: g and this expression simplifies to

−ι(ξM)i∗τ (N) = 1
2
〈Adgξ, ϕ∗(θL + θR) + Adϕg

∗θR + Adϕ−1(g−1)∗θL〉.

On the other hand, using (g−1)∗θR = −g∗θL we find

1
2
〈Φ∗(θL + θR), ξ〉 = 1

2
〈ξ, (g−1ϕg)∗(θL + θR)〉

= 1
2
〈ξ, Adg−1Adϕ−1(g−1)∗θL + Adg−1ϕ∗θL + g∗θL

− g∗θL + Adg−1ϕ∗θR + Adg−1Adϕg
∗θR〉

= 1
2
〈Adgξ, Adϕ−1(g−1)∗θL + ϕ∗θL + ϕ∗θR + Adϕg

∗θR〉,

in agreement with the previous expression. This shows that the moment map condition is
satisfied.

Finally we would like to show that when we pull back to Φ−1(e) we get Ševera’s form.
First note that since Φ = g−1ϕg, on Φ−1(e) we have ϕ = e is constant. In particular
j∗ϕ∗θL = j∗ϕ∗θR = 0. So if we pull back (29) by j we get

j∗τ (N) = j∗τ (n) + 1
2
〈(g−1)∗θL, g∗θR〉.

Finally notice that (g−1)∗θL = −g∗θR and 〈g∗θR, g∗θR〉 = 0 (the wedge is antisymmetric
while the inner product is symmetric), so the second term cancels and we’re left with

j∗τ (N) = j∗τ (n).

To close, some brief comments on addressing the minimal degeneracy property. One ap-
proach attempted is probably the most direct, i.e. using Ševera’s formula to write down an
expression for ω and then trying to find it’s kernel directly. This seems to lead to compli-
cated formulas and it is not clear how to proceed (even for the smallest n which leads to a
non-trivial moduli space). Another approach would be to try to construct M using already-
known q-Hamiltonian spaces, for example, a clever choice of conjugacy classes (for example,
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the double D(G) can be constructed this way), together with the fusion product. Yet another
possible approach is through Dirac geometry, using the elegant result of Bursztyn-Crainic
that a quasi-Hamiltonian g-structure on M is equivalent to a strong (forward) Dirac map
Φ : M → G, where G carries the Cartan-Dirac structure (twisted by η)–see [4] for more
information and references. One way of proceeding using the set-up above would be to try
to work with the fact that Ψ : GN → G is a strong Dirac map (again see [4]); at least for
initial attempts this runs into trouble though, since it seems that the inclusion i : M ↪→ GN

is not a (forward) Dirac map.
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